
 AVR 8-bit Microcontrollers

 AVR42787: AVR Software User Guide

 APPLICATION NOTE

Introduction

The Atmel® AVR® core is an advanced RISC architecture created to make C
code run efficiently with a low memory footprint.

This document applies to tinyAVR®, megaAVR®, and XMEGA® MCUs. This
document describes some frequently used functions, general means, and
frequently asked questions to help new and intermediate AVR developers
with developing AVR code.

Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

Table of Contents

Introduction..1

1. AVR 8-bit Architecture... 4

2. AVR GCC and the Toolchain... 5

3. I/O Header Files...6

4. Flash Variables.. 7

5. Interrupt Service Routine...8
5.1. Interrupt Service Routine Declaration and Definition... 8
5.2. Variable Updated Within An Interrupt Service Routine...8

6. Calculate UART Baud Rate... 10

7. Power Management and Sleep Modes..11
7.1. Functions..12

7.1.1. void sleep_enable..12
7.1.2. void sleep_disable... 12
7.1.3. void sleep_cpu...12
7.1.4. void sleep_mode..13
7.1.5. void sleep_bod_disable... 13

8. Delay Routines.. 14
8.1. F_CPU..14
8.2. void _delay_ms...14
8.3. void _delay_us..15

9. Tips and Tricks to Reduce Code Size..16
9.1. Tips and Tricks to Reduce Code Size.. 16

9.1.1. Tip #1 Data Types and Sizes... 16
9.1.2. Tip #2 Global Variables and Local Variables..17
9.1.3. Tip #3 Loop Index.. 18
9.1.4. Tip #4 Loop Jamming.. 19
9.1.5. Tip #5 Constants in Program Space.. 20
9.1.6. Tip #6 Access Types: Static...21
9.1.7. Tip #7 Low Level Assembly Instructions..24

9.2. Tips and Tricks to Reduce Execution Time.. 25
9.2.1. Tip #8 Data Types and Sizes... 25
9.2.2. Tip #9 Conditional Statement...25
9.2.3. Tip #10 Unrolling Loops... 27
9.2.4. Tip #11 Control Flow: If-Else and Switch-Case..28

9.3. Conclusion..30

10. References.. 31

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

2

11. Revision History...32

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

3

1. AVR 8-bit Architecture
The AVR architecture is based upon the Harvard architecture. It has separate memories and buses for
program and data. This makes it possible to fetch program and data simultaneously. It has 32 8-bit fast-
access General Purpose Working Registers with a single clock cycle access time. The 32 working
registers is one of the keys to efficient C coding. The registers are connected to the ALU so arithmetic
and logical instructions can be performed on the data in these registers. In one clock cycle, an AVR can
feed data from two arbitrary registers to the ALU, perform an operation, and write back the result to the
registers.

Instructions in the program memory are executed with a single level pipeline. While one instruction is
being executed, the next instruction is fetched from the program memory. This concept enables
instructions to be executed in every clock cycle. Most AVR instructions have a single 16-bit word format.
Every program memory address contains a 16- or 32-bit instruction.

Refer to the “AVR CPU Core” section in the respective device datasheet for more details.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

4

2. AVR GCC and the Toolchain
GCC stands for GNU Compiler Collection. The GCC version used with the AVR is named AVR GCC.

Refer to the GNU Compiler Collection User Manual for more details.

It takes many other tools working together to produce the final executable application for the AVR
microcontroller. The group of tools is called a toolchain. In this AVR toolchain, avr-libc serves as an
important C Library, which provides many of the same functions found in a regular Standard C Library
and many additional library functions that is specific to an AVR.

Refer to the AVR-Libc User Manual for more details.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

5

https://gcc.gnu.org/onlinedocs/gcc/
http://www.nongnu.org/avr-libc/user-manual/

3. I/O Header Files
I/O header files contain identifiers for all the register names and bit names for a particular processor. They
must be included when registers are being used in the code.

AVR GCC has individual I/O header files for each processor. However, the actual processor type is
specified as a command line flag to the compiler. (Using the -mmcu= processor flag.) This is usually done
in the Makefile. This allows you to specify only a single header file for any processor type:

#include <avr/io.h>

IAR™ also allows you to specify only a single header file for any processor type:

#include <ioavr.h>

The GCC and IAR compilers know the processor type and through the single header file above, it can pull
in and include the correct individual I/O header file. This has the advantage that you only have to specify
one generic header file, and you can easily port your application to another processor type without having
to change every file to include the new I/O header file.

Note:  IAR does not always use the same register names or bit names that are used in the AVR
datasheet. There may be some discrepancies between the register names found in the AVR GCC I/O
header files and the IAR I/O header files.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

6

4. Flash Variables
The C language was not designed for processors with separate memory spaces. This means that there
are various non-standard ways to define a variable whose data resides in the Program Memory (Flash).

AVR GCC uses Variable Attributes to declare a variable in Program Memory:

int mydata[] __attribute__((__progmem__))

AVR-Libc also provides a convenient macro for the Variable Attribute:

#include <avr/pgmspace.h>
int mydata[] PROGMEM = ...

Note:  The PROGMEM macro requires that you include <avr/pgmspace.h >. This is the normal method
for defining a variable in Program Space.

IAR uses a non-standard keyword to declare a variable in Program Memory:

 __flash int mydata[] = ...

There is also a way to create a method to define variables in Program Memory that is common between
the two compilers (AVR GCC and IAR). Create a header file that has these definitions:

#if (defined __GNUC__)
 #define FLASH_DECLARE(x) x __attribute__((__progmem__))
#elif (defined __ICCAVR__)
 #define FLASH_DECLARE(x) __flash x
#endif

This code snippet checks if GCC or IAR is the compiler being used and defines a macro
FLASH_DECLARE(x) that will declare a variable in Program Memory using the appropriate method
based on the compiler that is being used. Then you would use it as follows:

FLASH_DECLARE(int mydata[] = ...);

In AVR GCC, to read back flash data, use the pgm_read_∗() macros defined in <avr/pgmspace.h >. All
Program Memory handling macros are defined there.

In IAR, flash variables can be read directly because the IAR compiler will generate LPM instruction
automatically.

There is also a way to create a method to read variables in Program Memory that is common between the
two compilers (AVR GCC and IAR). Create a header file that has these definitions:

#if (defined __GNUC__)
 #define PROGMEM_READ_BYTE(x) pgm_read_byte(x)
 #define PROGMEM_READ_WORD(x) pgm_read_word(x)
#elif (defined __ICCAVR__)
 #define PROGMEM_READ_BYTE(x) *(x)
 #define PROGMEM_READ_WORD(x) *(x)
#endif

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

7

5. Interrupt Service Routine

5.1. Interrupt Service Routine Declaration and Definition
The C language Standard does not specify a standard for declaring and defining Interrupt Service
Routines (ISR). Different compilers have different ways of defining registers, some of which use non-
standard language constructs.

AVR GCC uses the ISR macro to define an ISR. This macro requires the header file: <avr/
interrupt.h>. In AVR GCC an ISR is defined as follows:

#include <avr/interrupt.h>
ISR(PCINT1_vect)
{
 //code
}

In IAR:

#pragma vector=PCINT1_vect //C90
__interrupt void handler_PCINT1_vect()
{
 // code
}

or

_Pragma("vector=PCINT1_vect") //C99
__interrupt void handler_PCINT1_vect()
{
 // code
}

There is also a way to create a method to define an ISR that is common between the two compilers (AVR
GCC and IAR). Create a header file that has these definitions:

#if defined(__GNUC__)
 #include <avr/interrupt.h>
#elif defined(__ICCAVR__)
 #define __ISR(x) _Pragma(#x)
 #define ISR(vect) __ISR(vector=vect) __interrupt void handler_##vect(void)
#endif

This is read by the precompiler and correct code will be used depending on which compiler is being used.
An ISR definition would then be common between IAR and GCC and defined as follows:

ISR(PCINT1_vect)
{
 //code
}

5.2. Variable Updated Within An Interrupt Service Routine
Variables that are changed inside ISRs need to be declared volatile. When using the optimizer, in a loop
like the following one:

uint8_t flag;
...
ISR(SOME_vect) {
 flag = 1;

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

8

}
...
 while (flag == 0) {
 ...
 }

the compiler will typically access "flag" only once, and optimize further accesses completely away, since
its code path analysis shows that nothing inside the loop could change the value of "flag" anyway. To tell
the compiler that this variable could be changed outside the scope of its code path analysis (e. g. within
an interrupt service routine), the variable needs to be declared like:

volatile uint8_t flag;

When the variable is declared volatile as above the compiler makes certain that when the variable is
updated or read it will always write changes back to SRAM memory and read the variable from SRAM.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

9

6. Calculate UART Baud Rate
Some AVR datasheets give the following formula for calculating baud rates:

(F_CPU/(UART_BAUD_RATE*16UL)-1UL)

Unfortunately the formula does not work with all combinations of clock speeds and baud rates due to
integer truncation during the division operator.

When doing integer division it is usually better to round to the nearest integer, rather than to the lowest.
To do this add 0.5 (i. e. half the value of the denominator) to the numerator before the division. The
formula to use is then as follows.

((F_CPU + UART_BAUD_RATE * 8UL) / (UART_BAUD_RATE * 16UL) - 1UL)

This is also the way it is implemented in <util/setbaud.h >.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

10

7. Power Management and Sleep Modes
Use of the SLEEP instruction can allow an application to reduce its power consumption considerably. AVR
devices can be put into different sleep modes. Refer to the device datasheet for details.

There are several macros provided in this header file to actually put the device to sleep. The simplest way
is to set the desired sleep mode using set_sleep_mode() , and then call sleep_mode(). This macro
automatically sets the sleep enable bit, goes to sleep, and clears the sleep enable bit.

Example:
#include <avr/sleep.h>
...
 set_sleep_mode(<mode>);
 sleep_mode();

Note:  Unless your purpose is to completely lock the CPU (until a hardware reset), interrupts need to be
enabled before going to sleep.

Often the ISR sets a software flag or variable that is being checked, and if set, handled in the main loop. If
the sleep command is used in the main loop there is a potential for a race condition to occur. In the
following code there is a race condition between sleep being issued an the flag being set in the ISR.
#include <avr/interrupt.h>
#include <avr/sleep.h>
...
volatile bool flag = false;
...
ISR(PCINT1_vect){
 flag = true;
}
int main(){
 ...
 while(1){
 if(flag){
 flag = false;
 ...
 }
 sleep_cpu();
 ...
 }
}

The problem in this code comes from the fact that the ISR can happen at virtually any point in time. If the
interrupt happens just after the if statement has been evaluated the device will go to sleep without doing
what is required in the if statement. The actual consequence of this is dependent on the application. A
way to avoid such race conditions is to disable global interrupts before checking the SW flag using the
cli() command.

Example:
>#include <avr/interrupt.h>
#include <avr/sleep.h>
...
volatile bool flag = false;
...
ISR(PCINT1_vect){
 flag = true;
}
int main(){
 ...
 sleep_enable();
 while(1){
 cli();
 if(flag){
 flag = false;
 ...
 sei();

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

11

 sleep_cpu();
 }
 sei();
 ...
 }
}

This sequence ensures an atomic test of flag with interrupts being disabled. If the condition is met,
sleep mode will be prepared, and the SLEEP instruction will be scheduled immediately after a SEI
instruction. As the instruction right after the SEI is guaranteed to be executed before an interrupt could
trigger, it is sure the device will be put to sleep. If an interrupt is pending when global interrupts are
disabled the device will then jump to the ISR and continue execution after the SEI and sleep instruction.
The program flow will reach the if statement and not sit waiting for a new interrupt in sleep.

Note that some AVR datasheets recommend disabling sleep immediately after waking and enabling sleep
immediately before the sleep command. This recommendation is to protect against entering sleep in case
the programmer has created bad pointers. It is debatable what would be the best behavior for any given
application if it starts executing code from the wrong part of flash. The best type of protection is likely to
use the WDT to reset the device.

Some devices have the ability to disable the Brown Out Detector (BOD) before going to sleep. This will
also reduce power while sleeping. If the specific AVR device has this ability then an additional macro is
defined: sleep_bod_disable(). This macro generates inline assembly code that will correctly
implement the timed sequence for disabling the BOD before sleeping. However, there is a limited number
of cycles after the BOD has been disabled that the device can be put into sleep mode, otherwise the BOD
will not truly be disabled. Recommended practice is to disable the BOD (sleep_bod_disable()), set
the interrupts (sei()), and then put the device to sleep (sleep_cpu()), as follows:

cli();
if (some_condition){
 sleep_bod_disable();
 sei();
 sleep_cpu();
}
sei();

7.1. Functions

7.1.1. void sleep_enable
void sleep_enable(void)
Put the device in sleep mode. How the device is brought out of sleep mode depends on the specific mode
selected with the set_sleep_mode() function. See the datasheet for your device for more details.

Set the SE (sleep enable) bit.

7.1.2. void sleep_disable
void sleep_disable(void)
Clear the SE (sleep enable) bit.

7.1.3. void sleep_cpu
void sleep_cpu(void)
Put the device into sleep mode. The SE bit must be set beforehand, and it is recommended to clear it
afterwards.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

12

7.1.4. void sleep_mode
void sleep_mode(void)
Put the device into sleep mode, taking care of setting the SE bit before, and clearing it afterward.

7.1.5. void sleep_bod_disable
void sleep_bod_disable(void)
Disable BOD before going to sleep. Not available on all devices.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

13

8. Delay Routines
The functions described here and as found in the delay.h header file are wrappers around the basic busy-
wait functions from <util/delay_basic.h>. They are meant as convenience functions where actual time
values can be specified rather than a number of cycles to wait for. The idea behind is that compile-time
constant expressions will be eliminated by compiler optimization so floating-point expressions can be
used to calculate the number of delay cycles needed based on the CPU frequency passed by the macro
F_CPU.

In order for these functions to work as intended, compiler optimizations must be enabled, and the delay
time must be an expression that is a known constant at compile-time. If these requirements are not met,
the resulting delay will be much longer (and basically unpredictable), and applications that otherwise do
not use floating-point calculations will experience severe code bloat by the floating-point library routines
linked into the application.

8.1. F_CPU
The macro F_CPU specifies the CPU frequency to be considered by the delay macros. This macro is
normally supplied by the environment (e.g. from within a project header, or the project's Makefile). The
value 1MHz in <util/delay.h> is only provided as a "vanilla" fallback if no such user-provided definition
could be found.

In terms of the delay functions, the CPU frequency can be given as a floating-point constant (e.g.
3.6864E6 for 3.6864MHz). However, the macros in <util/setbaud.h> require it to be an integer value.

8.2. void _delay_ms
void _delay_ms(double __ms)
The maximal possible delay is 262.14ms / F_CPU in MHz with the highest resolution. When the user
request delay which exceed the maximum possible one, _delay_ms() provides a decreased resolution
functionality. In this mode _delay_ms() will work with a resolution of 1/10ms, providing delays up to
6.5535 seconds (independent from the CPU frequency). The user will not be informed about decreased
resolution.

If the avr-gcc toolchain has __builtin_avr_delay_cycles() support, the maximal possible delay is
4294967.295ms/ F_CPU in MHz. For values greater than the maximal possible delay, overflows results in
no delay i.e., 0ms.

Conversion of __ms into clock cycles may not always result in an integer. By default, the clock cycles
rounded up to next integer. This ensures that the user gets at least __ms microseconds of delay.

Alternatively, by defining the macro __DELAY_ROUND_DOWN__, or __DELAY_ROUND_CLOSEST__, before
including this header file, the algorithm can be made to round down, or round to closest integer,
respectively.

Note: 

The implementation of _delay_ms() based on __builtin_avr_delay_cycles() is not backward compatible
with older implementations. In order to get functionality backward compatible with previous versions, the
macro "__DELAY_BACKWARD_COMPATIBLE__" must be defined before including this header file. Also,
the backward compatible algorithm will be chosen if the code is compiled in a freestanding environment
(GCC option -ffreestanding), as the math functions required for rounding are not available to the
compiler then.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

14

8.3. void _delay_us
void _delay_us(double __us)
The macro F_CPU is supposed to be defined to a constant defining the CPU clock frequency (in Hertz).

The maximal possible delay is 768μs/F_CPU in MHz.

If the user requests a delay greater than the maximal possible one, _delay_us() will automatically call
_delay_ms() instead. The user will not be informed about this case.

If the avr-gcc toolchain has __builtin_avr_delay_cycles() support, maximal possible delay is
4294967.295μs/F_CPU in MHz. For values greater than the maximal possible delay, overflow results in
no delay i.e., 0μs.

Conversion of __us into clock cycles may not always result in integer. By default, the clock cycles
rounded up to next integer. This ensures that the user gets at least __us microseconds of delay.

Alternatively, by defining the macro __DELAY_ROUND_DOWN__, or __DELAY_ROUND_CLOSEST__, before
including this header file, the algorithm can be made to round down, or round to closest integer,
respectively.

Note: 

The implementation of _delay_us() based on __builtin_avr_delay_cycles() is not backward compatible
with older implementations. In order to get functionality backward compatible with previous versions, the
macro __DELAY_BACKWARD_COMPATIBLE__ must be defined before including this header file. Also, the
backward compatible algorithm will be chosen if the code is compiled in a freestanding environment
(GCC option -ffreestanding), as the math functions required for rounding are then not available to
the compiler.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

15

9. Tips and Tricks to Reduce Code Size
The example codes and testing results in this section are based on the following conditions:

1. AVR GCC 8-bit Toolchain Version: AVR_8_bit_GNU_Toolchain_3.2.1_292 (GCC version 4.5.1).
2. Target Device: ATmega88PA.

9.1. Tips and Tricks to Reduce Code Size
In this section, we list some tips about how to reduce code size. For each tip description and sample code
are given.

9.1.1. Tip #1 Data Types and Sizes
Use the smallest applicable data type possible. Evaluate your code and in particular the data types.
Reading an 8-bit (byte) value from a register only requires a single byte variable and not a two byte
variable, thus saving code-space and data-space.

The size of data types on the AVR 8-bit microcontrollers can be found in the <stdint.h> header file and is
summarized in the table below.

Table 9-1. Data Types on AVR 8-bit Microcontrollers in <stdint.h>

Data type Size

signed char / unsigned char int8_t / uint8_t 8-bit

signed int / unsigned int int16_t / uint16_t 16-bit

signed long / unsigned long int32_t / uint32_t 32-bit

signed long long / unsigned long long int64_t / uint64_t 64-bit

Be aware that certain compiler -switches can change this (avr-gcc -mint8 turns the integer data type to an
8-bit integer). The table below shows the effect of different data types and sizes. The output from the avr-
size utility shows the code space we used when this application is built with -Os (Optimize for size).

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

16

Table 9-2. Example of Different Data Types and Sizes

Unsigned Int (16bit) Unsigned Char (8bit)

C source code include <avr/io.h>

unsigned int readADC() {

 return ADCH;

};

int main(void)

{

 unsigned int mAdc = readADC();

}

#include <avr/io.h>

unsigned char readADC() {

return ADCH;

};

int main(void)

{

unsigned char mAdc = readADC();

}

AVR Memory
Usage

Program: 92 bytes (1.1% Full) Program: 90 bytes (1.1% Full)

Compiler
optimization
level

-Os (Optimize for size) -Os (Optimize for size)

In the left example, we use the int (2-byte) data type as return value from the readADC() function and in
the temporary variable used to store the return value from the readADC() function.

In the right example we are using char(1-byte) instead. The Readout from the ADCH register is only 8
bits, and this means that a char is sufficient. 2 bytes are saved due to the return value of the function
readADC() and the temporary variable in main being changed from int (2-byte) to char (1-byte).

The difference in size will increase if the variable is manipulated more than what is done in this example.
In general both arithmetic and logical manipulation of a 16-bit variables takes more cycles and space than
an 8-bit variable.

Note:  There is a start-up code before running from main(). That’s why a simple C code takes up about
90 bytes.

9.1.2. Tip #2 Global Variables and Local Variables
In most cases, the use of global variables is not recommended. Use local variables whenever possible. If
a variable is used only in a function, then it should be declared inside the function as a local variable.

In theory, the choice of whether to declare a variable as a global or local variable should be decided by
how it is used.

If a global variable is declared, a unique address in SRAM will be assigned to this variable at program link
time. Access to a global variable will typically need extra bytes (usually two bytes for a 16 bits long
address) to get its address.

Local variables are preferably assigned to a register or allocated to stack if supported when they are
declared. As the function becomes active, the function’s local variables become active as well. Once the
function exits, the function’s local variables can be removed.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

17

The table below shows the effect of global and local variables.

Table 9-3. Example of Global Variables and Local Variables

Global variables Local variables

C source code #include <avr/io.h>

uint8_t global_1;

int main(void)

{

global_1 = 0xAA;

 PORTB = global_1;

}

#include <avr/io.h>

int main(void)

{

uint8_t local_1;

 local_1 = 0xAA;

PORTB = local_1;

}

AVR Memory Usage Program: 104 bytes (1.3% Full)

(.text + .data + .bootloader)

Data: 1 bytes (0.1% Full)

(.data + .bss + .noinit)

Program: 84 bytes (1.0% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Compiler optimization
level

-Os (Optimize for size) -Os (Optimize for size)

In the left example, we have declared a Byte-sized global variable. The output from the avr-size utility
shows that we use 104 bytes of code space and 1 byte of data space with optimization level -Os
(Optimize for size).

In the right example, after we declared the variable inside main() function as local variable, the code
space is reduced to 84 bytes and no SRAM is used.

9.1.3. Tip #3 Loop Index
Loops are widely used in 8-bit AVR code. There are "while () { }" loop, "for ()" loop, and "do
{ } while ()" loop. If the -Os optimization option is enabled, the compiler will optimize the loops
automatically to have the same code size.

However, we can still reduce the code size slightly. If we use a "do { } while ()" loop, an increment
or a decrement loop index generates different code size. Usually we write our loops counting from 0 to
the maximum value (increment), but it is more efficient to count the loop from the maximum value to 0
(decrement).

That is because in an increment loop, a comparison instruction is needed to compare the loop index with
the maximum value in every loop to check if the loop index reaches the maximum value.

When we use a decrement loop, this comparison is not needed any more because the decremented
result of the loop index will set the Z (zero) flag in SREG if it reaches zero.

Table 9-4 shows the effect of "do { } while ()" loop with increment and decrement loop index.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

18

Table 9-4. Example of do { } while () Loops with Increment and Decrement Loop Index

Do{ }While() with increment loop
index

Do{ }While() with decrement loop
index

C source code #include <avr/io.h>

int main(void)

{

uint8_t local_1 = 0;

do {

PORTB ^= 0x01;

local_1++;

 } while (local_1<100);

}

#include <avr/io.h>

int main(void)

{

uint8_t local_1 = 100;

 do {

PORTB ^= 0x01;

local_1--;(1)

} while (local_1);

}

AVR Memory Usage Program: 96 bytes (1.2% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Program: 94 bytes (1.1% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Compiler optimization
level

-Os (Optimize for size) -Os (Optimize for size)

Note: 
1. To have a clear comparison in C code lines, this example is written like "do {count-- ;} while

(count);" and not like "do {} while (--count);" usually used in C books. The two styles
generate the same code.

9.1.4. Tip #4 Loop Jamming
Loop jamming here refers to integrating the statements and operations from different loops to fewer loops
or to one loop, thus reduce the number of loops in the code.

In some cases, several loops are implemented one by one. This may lead to a long list of iterations. In
this case, loop jamming may help to increase the code efficiency by actually having the loops combined
into one.

Loop Jamming reduces code size and makes code run faster as well by eliminating the loop iteration
overhead. The table below shows the effect of loop jamming.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

19

Table 9-5. Example of Loop Jamming

Separate loops Loop jamming

C source code #include <avr/io.h>

int main(void)

{

 uint8_t i, total = 0;

uint8_t tmp[10] = {0};

for (i=0; i<10; i++) {

 tmp [i] = ADCH;

}

for (i=0; i<10; i++) {

 total += tmp[i];

}

 UDR0 = total;

}

#include <avr/io.h>

int main(void)

{

uint8_t i, total = 0;

 uint8_t tmp[10] = {0};

for (i=0; i<10; i++)

{

 tmp [i] = ADCH;

 total += tmp[i];

 }

UDR0 = total;

}

AVR Memory
Usage

Program: 164 bytes (2.0% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Program: 98 bytes (1.2% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Compiler
optimization
level

-Os (Optimize for size) -Os (Optimize for size)

9.1.5. Tip #5 Constants in Program Space
Many applications run out of SRAM, in which to store data, before they run out of Flash. Constant global
variables, tables or arrays which never change, should usually be allocated to a read-only section (Flash
or EEPROM on 8-bit AVR). By this way we can save precious SRAM space.

In this example we don’t use C keyword "const". Declaring an object "const" announces that its value
will not be changed. "const" is used to tell the compiler that the data is to be "read-only" and increases
opportunities for optimization. It does not identify where the data should be stored.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

20

To allocate data into program space (read-only) and retrieve them from program space, AVR-Libc
provides a simple macro "PROGMEM" and a macro "pgm_read_byte". The "PROGMEM" macro and
"pgm_read_byte" macro are defined in the <avr/pgmspace.h> system header file.

The table below shows how we save SRAM by moving the global string into program space.

Table 9-6. Example of Constants in Program Space

Constants in Data Space Constants in Program Space

C source
code

#include <avr/io.h>

uint8_t string[12] = {"hello
world!"};

int main(void)

{

UDR0 = string[10];

}

#include <avr/io.h>

#include <avr/pgmspace.h>

uint8_t string[12] PROGMEM = {"hello
world!"};

int main(void)

{

UDR0 = pgm_read_byte(&string[10]);

}

AVR Memory
Usage

Program: 122 bytes (1.5% Full)

(.text + .data + .bootloader)

Data: 12 bytes (1.2% Full)

(.data + .bss + .noinit)

Program: 102 bytes (1.2% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Compiler
optimization
level

-Os (Optimize for size) -Os (Optimize for size)

After we allocate the constants into program space, we see that the program space and data space are
both reduced. However, there is a slight overhead when reading back the data, because the function
execution will be slower than reading data from SRAM directly.

If the data stored in Flash are used multiple times in the code, size is reduced by using a temporary
variable instead of using the "pgm_read_byte" macro directly several times.

There are more macros and functions in the <avr/pgmspace.h> system header file for storing and
retrieving different types of data to/from program space. Refer to the AVR-Libc User Manual for more
details.

9.1.6. Tip #6 Access Types: Static
For global data, use the keyword "static" whenever possible. If global variables are declared with
keyword "static", they can be accessed only in the file in which they are defined. It prevents an
unplanned use of the variable (as an external variable) by the code in other files.

On the other hand, local variables inside a function should in most cases not be declared static. A static
local variable's value needs to be preserved between calls to the function and the variable persists

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

21

http://www.nongnu.org/avr-libc/user-manual/

throughout the whole program. Thus it requires permanent data space (SRAM) storage and extra codes
to access it. It is similar to a global variable except its scope is in the function where it's defined.

A static function is easier for the compiler to optimize, because its name is invisible outside of the file in
which it is declared and it will not be called from any other files.

If a static function is called only once in the file with optimization (-O1, -O2, -O3, and -Os) enabled, the
function will be optimized automatically by the compiler as an inline function and no assembler code is
created to jump in and out of it. The table below shows the effect of static function.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

22

Table 9-7. Example of Access Types: Static Function

Global Function (called once) Static Function (called once)

C source code #include <avr/io.h>

uint8_t string[12] = {"hello world!"};

void USART_TX(uint8_t data);

int main(void)

{

uint8_t i = 0;

while (i<12) {

USART_TX(string[i++]);

}

}

void USART_TX(uint8_t data)

{

 while(!(UCSR0A&(1<<UDRE0)));

 UDR0 = data;

}

#include <avr/io.h>

uint8_t string[12] = {"hello
world!"};

static void USART_TX(uint8_t
data);

int main(void)

{

 uint8_t i = 0;

while (i<12) {

USART_TX(string[i++]);

}

}

void USART_TX(uint8_t data)

{

 while(!(UCSR0A&(1<<UDRE0)));

 UDR0 = data;

}

AVR Memory
Usage

Program: 152 bytes (1.9% Full)

(.text + .data + .bootloader)

Data: 12 bytes (1.2% Full)

(.data + .bss + .noinit)

Program: 140 bytes (1.7% Full)

(.text + .data + .bootloader)

Data: 12 bytes (1.2% Full)

(.data + .bss + .noinit)

Compiler
optimization
level

-Os (Optimize for size) -Os (Optimize for size)

Note:  If the function is called multiple times, it will not be optimized to an inline function, because this will
generate more code than direct function calls.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

23

9.1.7. Tip #7 Low Level Assembly Instructions
Well coded assembly instructions are always the best optimized code. One drawback of assembly code is
the non-portable syntax, so it's not recommended for programmers in most cases.

However, using assembly macros reduces the pain often associated with assembly code, and it improves
the readability. Use macros instead of functions for tasks that generates less than 2-3 lines assembly
code. The table below shows the code usage of assembly macro compared with using a function.

Table 9-8. Example of Low Level Assembly Instructions

Function Assembly Macro

C source code #include <avr/io.h>

void enable_usart_rx(void)

{

UCSR0B |= 0x80;

};

int main(void)

{

enable_usart_rx();

while (1){

}

}

#include <avr/io.h>

#define enable_usart_rx() \

__asm__ __volatile__ (\

"lds r24,0x00C1" "\n\t" \

"ori r24, 0x80" "\n\t" \

 "sts 0x00C1, r24" \

 ::)

int main(void)

{

enable_usart_rx();

while (1){

}

}

AVR Memory
Usage

Program: 90 bytes (1.1% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Program: 86 bytes (1.0% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Compiler
optimization level

-Os (Optimize for size) -Os (Optimize for size)

Refer to AVR-Libc User Manual for more details.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

24

http://www.nongnu.org/avr-libc/user-manual/

9.2. Tips and Tricks to Reduce Execution Time
In this section, we list some tips about how to reduce execution time. For each tip, a brief description and
sample code are given.

9.2.1. Tip #8 Data Types and Sizes
In addition to reducing code size, selecting a proper data type and size will reduce execution time as well.
For AVR 8-bit, accessing 8-bit (Byte) value is always the most efficient way.

The table below shows the difference between 8-bit and 16-bit variables.

Table 9-9. Example of Data Types and Sizes

16-bit variable 8-bit variable

C source code #include <avr/io.h>

int main(void)

{

uint16_t local_1 = 10;

 do {

PORTB ^= 0x80;

} while (--local_1);

}

#include <avr/io.h>

int main(void)

{

uint8_t local_1 = 10;

do {

PORTB ^= 0x80;

} while (--local_1);

}

AVR Memory
Usage

Program: 94 bytes (1.1% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Program: 92 bytes (1.1% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Cycle counter 90 79

Compiler
optimization level

-O2 -O2

Note:  The loop will be unrolled by compiler automatically with –O3 option. Then the loop will be
expanded into repeating operations indicated by the loop index, so for this example there is no difference
with –O3 option enabled.

9.2.2. Tip #9 Conditional Statement
Usually pre-decrement and post-decrement (or pre-increment and post-increment) in normal code lines
make no difference. For example, "i--;" and "--i;" simply generate the same code. However, using
these operators as loop indices and in conditional statements make the generated code different.

As stated in Tip#3, using decrementing loop index results in a smaller code size. This is also helpful to get
faster execution in conditional statements.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

25

Furthermore, pre-decrement and post-decrement also have different results. From the table below, we
can see that faster code is generated with a pre-decrement conditional statement. The cycle counter
value here represents execution time of the longest loop.

Table 9-10. Example of Conditional Statement

Post-decrements in conditional
statement

Pre-decrements in conditional
statement

C source code #include <avr/io.h>

int main(void)

{

uint8_t loop_cnt = 9;

 do {

if (loop_cnt--) {

 PORTC ^= 0x01;

} else {

PORTB ^= 0x01;

loop_cnt = 9;

}

} while (1);

}

#include <avr/io.h>

int main(void)

{

uint8_t loop_cnt = 10;

do {

if (--loop_cnt) {

PORTC ^= 0x01;

} else {

PORTB ^= 0x01;

loop_cnt = 10;

}

} while (1);

}

AVR Memory
Usage

Program: 104 bytes (1.3% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Program: 102 bytes (1.2% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Cycle counter 75 61

Compiler
optimization
level

-O3 -O3

The "loop_cnt" is assigned with different values in the two examples to make sure the examples work
the same: PORTC0 is toggled nine times while POTRB0 is toggled once in each turn.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

26

9.2.3. Tip #10 Unrolling Loops
In some cases, we could unroll loops to speed up the code execution. This is especially effective for short
loops. After a loop is unrolled, there are no loop indices to be tested and fewer branches are executed
each round in the loop.

The table below shows the effect of unrolling loops.

Table 9-11. Example of Unrolling Loops

Loops Unrolling loops

C source code #include <avr/io.h>

int main(void)

{

uint8_t loop_cnt = 10;

do {

PORTB ^= 0x01;

 } while (--loop_cnt);

}

#include <avr/io.h>

int main(void)

{

 PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

PORTB ^= 0x01;

}

AVR Memory Usage Program: 94 bytes (1.5% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.1% Full)

(.data + .bss + .noinit)

Program: 142 bytes (1.7% Full)

(.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)

(.data + .bss + .noinit)

Cycle counter 80 50

Compiler
optimization level

-O2 -O2

By unrolling the "do { } while ()" loop, we significantly speed up the code execution from 80 clock
cycles to 50 clock cycles.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

27

Be aware that the code size is increased from 94 bytes to 142 bytes after unrolling the loop. This is also
an example to show the tradeoff between speed and size optimization.

Note:  If -O3 option is enabled in this example, the compiler will unroll the loop automatically and
generate the same code as unrolling loop manually.

9.2.4. Tip #11 Control Flow: If-Else and Switch-Case
"if-else" and "switch-case" are widely used in C code, a proper organization of the branches can
reduce the execution time.

For "if-else", always put the most probable conditions in the first place. Then the following conditions
are less likely to be executed. Thus time is saved for most cases.

Using "switch-case" may eliminate the drawbacks of "if-else", because for a "switch-case", the
compiler usually generates lookup tables with index and jump to the correct place directly.

If it's hard to use "switch-case", we can divide the "if-else" branches into smaller sub-branches.
This method reduces the execution time for a worst case condition. In the table below, we get data from
ADC and then send data through USART. "ad_result <= 240" is the worst case.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

28

Table 9-12. Example of If-Else Sub-Branch

If-Else branch If-Else sub-branch

C source code #include <avr/io.h>

uint8_t ad_result;

uint8_t readADC() {

return ADCH;

};

void send(uint8_t data){

UDR0 = data;

};

int main(void)

uint8_t output;

ad_result = readADC();

if(ad_result <= 30){

output = 0x6C;

}else if(ad_result <= 60){

output = 0x6E;

}else if(ad_result <= 90){

output = 0x68;

}else if(ad_result <= 120){

output = 0x4C;

}else if(ad_result <= 150){

output = 0x4E;

}else if(ad_result <= 180){

output = 0x48;

}else if(ad_result <= 210){

output = 0x57;

}else if(ad_result <= 240){

output = 0x45;

}

send(output);

}

int main(void)

{

uint8_t output;

ad_result = readADC();

if (ad_result <= 120){

if (ad_result <= 60){

if (ad_result <= 30){

output = 0x6C;

}

else{

output = 0x6E;

}

}

else{

if (ad_result <= 90){

output = 0x68;

}

else{

output = 0x4C;

}

}

}

else{

if (ad_result <= 180){

if (ad_result <= 150){

output = 0x4E;

}

else{

output = 0x48;

}

}

else{

if (ad_result <= 210){

output = 0x57;

}

else{

output = 0x45;

}

}

}

send(output);

}

AVR Memory Usage Program: 198 bytes (2.4% Full)

(.text + .data + .bootloader)

Data: 1 bytes (0.1% Full)

(.data + .bss + .noinit)

Program: 226 bytes (2.8% Full)

(.text + .data + .bootloader)

Data: 1 bytes (0.1% Full)

(.data + .bss + .noinit)

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

29

If-Else branch If-Else sub-branch

Cycle counter 58 (for worst case) 48 (for worst case)

Compiler
optimization level

-O3 -O3

We can see it requires less time to reach the branch in the worst case. We could also note that the code
size is increased. Thus we should balance the result according to specific requirement on size or speed.

9.3. Conclusion
In this chapter, we list some tips and tricks about C code efficiency in size and speed. Thanks to the
modern C compilers, they are smart in invoking different optimization options automatically in different
cases. However, no compiler knows the code better than the developer, so a good coding is always
important.

As shown in the examples, optimizing one aspect may have an effect on the other. We need a balance
between code size and speed based on our specific needs.

Although we have these tips and tricks for C code optimization, for a better usage of them, a good
understanding of the device and compiler you are working on is quite necessary. And definitely there are
other skills and methods to optimize the code efficiency in different application cases.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

30

10. References
• GNU Compiler Collection Manual (https://gcc.gnu.org/onlinedocs/gcc/)
• AVR-Libc User Manual (http://www.nongnu.org/avr-libc/user-manual/)
• Atmel Studio (http://www.atmel.com/tools/atmelstudio.aspx?tab=overview)
• Atmel START (http://start.atmel.com)
• IAR C/C++ Compiler User Guide for AVR (http://ftp.iar.se/WWWfiles/AVR/webic/doc/

EWAVR_CompilerReference.pdf)

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

31

https://gcc.gnu.org/onlinedocs/gcc/
http://www.nongnu.org/avr-libc/user-manual/
http://www.atmel.com/tools/atmelstudio.aspx?tab=overview
http://start.atmel.com/
http://ftp.iar.se/WWWfiles/AVR/webic/doc/EWAVR_CompilerReference.pdf
http://ftp.iar.se/WWWfiles/AVR/webic/doc/EWAVR_CompilerReference.pdf

11. Revision History
Doc Rev. Date Comments

42787A 10/2016 Initial document release.

Atmel AVR42787: AVR Software User Guide [APPLICATION NOTE]
Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

32

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42787A-AVR-Software-User-Guide_AVR42787_Application Note-10/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, megaAVR®, tinyAVR®, XMEGA®, and others are registered trademarks or
trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. AVR 8-bit Architecture
	2. AVR GCC and the Toolchain
	3. I/O Header Files
	4. Flash Variables
	5. Interrupt Service Routine
	5.1. Interrupt Service Routine Declaration and Definition
	5.2. Variable Updated Within An Interrupt Service Routine

	6. Calculate UART Baud Rate
	7. Power Management and Sleep Modes
	7.1. Functions
	7.1.1. void sleep_enable
	7.1.2. void sleep_disable
	7.1.3. void sleep_cpu
	7.1.4. void sleep_mode
	7.1.5. void sleep_bod_disable

	8. Delay Routines
	8.1. F_CPU
	8.2. void _delay_ms
	8.3. void _delay_us

	9. Tips and Tricks to Reduce Code Size
	9.1. Tips and Tricks to Reduce Code Size
	9.1.1. Tip #1 Data Types and Sizes
	9.1.2. Tip #2 Global Variables and Local Variables
	9.1.3. Tip #3 Loop Index
	9.1.4. Tip #4 Loop Jamming
	9.1.5. Tip #5 Constants in Program Space
	9.1.6. Tip #6 Access Types: Static
	9.1.7. Tip #7 Low Level Assembly Instructions

	9.2. Tips and Tricks to Reduce Execution Time
	9.2.1. Tip #8 Data Types and Sizes
	9.2.2. Tip #9 Conditional Statement
	9.2.3. Tip #10 Unrolling Loops
	9.2.4. Tip #11 Control Flow: If-Else and Switch-Case

	9.3. Conclusion

	10. References
	11. Revision History

